DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples.
نویسندگان
چکیده
A small scale DNA microarray containing a set of oligonucleotide probes targeting the 16S rRNAs of several groups of nitrifying bacteria was developed for the monitoring of wastewater treatment plant samples. The microarray was tested using reference rRNAs from pure cultures of nitrifying bacteria. Characterization of samples collected from an industrial wastewater treatment facility demonstrated that nitrifying bacteria could be detected directly by microarray hybridization without the need for PCR amplification. Specifically, the microarray detected Nitrosomonas spp. but did not detect Nitrobacter. The specificity and sensitivity of direct detection was evaluated using on-chip dissociation analysis, and by two independent analyses--an established membrane hybridization format and terminal restriction fragment length polymorphism fingerprinting (T-RFLP). The latter two analyses also revealed Nitrospira and Nitrobacter to be contributing populations in the treatment plant samples. The application of DNA microarrays to wastewater treatment systems, which has been demonstrated in the current work, should offer improved monitoring capabilities and process control for treatment systems, which are susceptible to periodic failures.
منابع مشابه
Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations.
The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus m...
متن کامل16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order "Rhodocyclales".
For simultaneous identification of members of the betaproteobacterial order "Rhodocyclales" in environmental samples, a 16S rRNA gene-targeted oligonucleotide microarray (RHC-PhyloChip) consisting of 79 probes was developed. Probe design was based on phylogenetic analysis of available 16S rRNA sequences from all cultured and as yet uncultured members of the "Rhodocyclales." The multiple nested ...
متن کاملAssessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes
The bacterial community composition of activated sludge from a wastewater treatment plant (Almería, Spain) with the particularity of using seawater was investigated by applying 454-pyrosequencing. The results showed that Deinococcus-Thermus, Proteobacteria, Chloroflexi and Bacteroidetes were the most abundant retrieved sequences, while other groups, such as Actinobacteria, Chlorobi, Deferribact...
متن کاملWaterborne pathogen detection by use of oligonucleotide-based microarrays.
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used ...
متن کاملTaxonomic Precision of Different Hypervariable Regions of 16S rRNA Gene and Annotation Methods for Functional Bacterial Groups in Biological Wastewater Treatment
High throughput sequencing of 16S rRNA gene leads us into a deeper understanding on bacterial diversity for complex environmental samples, but introduces blurring due to the relatively low taxonomic capability of short read. For wastewater treatment plant, only those functional bacterial genera categorized as nutrient remediators, bulk/foaming species, and potential pathogens are significant to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 39 14 شماره
صفحات -
تاریخ انتشار 2005